a2 United States Patent

US009178827B2

(10) Patent No.: US 9,178,827 B2

Kaplan et al. 45) Date of Patent: Nov. 3, 2015
(54) RATE CONTROL BY TOKEN BUCKETS (56) References Cited
(71) Applicant: International Business Machines U.S. PATENT DOCUMENTS
Corporation, Armonk, NY (US) 6,801,500 Bl 10/2004 Chandran
8,032,653 B1* 10/2011 Li_u etal. oo 709/235
(72) Inventors: Marc A. Kaplan, Bethel, CT (US); %882;8(1)25?22 ﬁ} %gggg gllﬁx
aram
Anna §. Povzner, San Jose, CA (US) 2010/0054125 Al 3/2010 Bernstein et al.
2010/0246596 Al* 9/2010 Nakamuraetal. 370/428
(73) Assignee: GLOBALFOUNDRIES U.S. 2 LLC, 2010/0302942 Al 12/2010 Shankar et al.
Hopewell Junction, NY (US) OTHER PUBLICATIONS
(*) Notice: Subject o any disclaimer, the term of this Mehra, A. et al., Design Considerations for Rate Control of Aggre-
patent is extended or adjusted under 35 EEZi:ﬂoECfE))rC ;Zxcgzgs’ﬁignfiing in Network Processors, Apr. 23
U.S.C. 154(b) by 122 days. 2007 o
Eardley, P. et al., Metering and Marking Behaviour of PCN-Nodes,
(21) Appl. No.: 13/958,841 Nov. 24, 2009.
(22) Tiled: Aug.5,2013 * cited by examiner
Primary Examiner — Dady Chery
(65) Prior Publication Data (74) Attorney, Agent, or Firm — Andrew M. Calderon;
US 2015/0036503 Al Feb. 5. 2015 Roberts Mlotkowski Safran & Cole, P.C.
57 ABSTRACT
(51) Int.ClL Aspects of the invention are provided for rate control and
HO4L 1/00 (2006.01) management of service requests. A token bucket is employed
HO4L 12/819 (2013.01) in conjunction with a capacity sharing scheme to manage
(52) US.CL processing of service requests. Each token represents the
CPC oo H04L 47/215 (2013.01) capacity reserved for a particular source of requests. Excess
(58) Field of Classification Search tokens may be shed, with the excess tokens representing
CPC ... HO4L 47/10: HO4L 47/30: HOA4L 47/13: available excess capacity. Similarly, a projected time at which
HO4L 47/1 lf HO4L 47 /12f HO4L 47/1 4f the service request(s) may be released may be computed in
’ ’ HO4L 47 /15’ the event the bucket does not contain the required quantity of
USPC oo 370/229-232, 235, 236, 412 tokens to process the request.

See application file for complete search history.

420

18 Claims, 6 Drawing Sheets

405

Seyver

432~

, 41

o422

Processing Unit

424~ Iaug

Memory

Functional Unit

Raceipt Manager

FAn

U.S. Patent Nov. 3, 2015

Sheet 1 of 6

US 9,178,827 B2

Was a
Pravicusty Schedulad
Request Satisfied?

% = Number of Tokens Recsived
from when Request was Satisfied
Urti Prasent Time

1034

v

Asszas Tolal Mumber of Tokens
in Bucket

T

Does
Cuantity of Tokens

i Bucket Execsed
Burst Size?
lézs

C = Masimum Guantity of Tokens
Hucket can Mold

-~ 1106

there Sufficient
MNumber of Tokens
{0 Satisfy Request
Without Delay?

[

~1

n
o120

NG

Wait to Satisly Request

122

Ascertain Fulure Time o
Salisfy the Request, 2

b= Tokars Lefi in Buckel Afler
Satisfied Reqguest

114

124

v

initialize Bucket! State

t= Current Timg, w

.~ 116

126

¥

L=W

118

Wait Until Time 7

U.S. Patent Nov. 3, 2015

YWas g

Praviously Schedulad WO

Sheet 2 of 6

US 9,178,827 B2

\ Request Batisfied 7

L for BuW

YES

% = Number of Tokens Rersivad
by Bucket, from when Request was
Zatisfied Untll Presant Tims

4

Assass Tolal Numbser of Tokens
in Buckety

204

-

¥

Qug: wtatj of Tckena ~ N

2

in Bucket Bxcend
Burst Size ,/

Y ES

G = Maximum Quanbily of Tokens
Bucksty can Hold

210

¥

Buckety have
Enough Tokens
to Satisly Request

Without Delay?

~
jYES

N NG

b, = Number of Tokens in Bucket 214
Alter Batisfied Request
{11 = Current Time, w 215

¥

220

Wait to Salisly Request

£322

Ascertain Fulure Time to
Satisty the Reguest

U.S. Patent

224, ?
1

Nov. 3, 2015

o = Nurnber of Buchkets
in the Array

Sheet 3 of 6

US 9,178,827 B2

o
o
5

- 228

228~
4

A

k

Search Bucket; in the Aray

Buckat; have
Enough Tokens o

NG

Process Pending

Praviously Scheduled
Request Satisfied
for Bucket;

s

& > Bursisize NO

Doas

_ of Bucket

Set e to Capacity of Bucked,

//’ Bucket; have
g Enough Tokens
Cver Sicm
Ling?

= 248
YES I's

L

Skim Tokens from Bucket
248

¥ i

Update Stats of Bucket,

FIG. 2
{Continued)

US 9,178,827 B2

Sheet 4 of 6

Nov. 3, 2015

U.S. Patent

€ Old

088
\
/
N 058
O ~ »
O & O
C
o
[oJ
(o]
&}
o e © 0 o
Y78 — 28— {75 e .
(o) o] vl
o 3 w o] 2
e PR i N p T e N
T A N
4o A W . O M oo ”
_\ D m)
/ ™] / 3
pin’ wel oge
O
o
O
O
JICIBIBUBEY USYG] Hi01e38U80) USNOL ¥ 018i6U80) USYOL
7 ; 7
Pl s/ 918/

o
L
LA

US 9,178,827 B2

Sheet 5 of 6

Nov. 3, 2015

U.S. Patent

¥ ol

RO

wﬁnp

ey

9&;

Glp -

OG-+ ieBouepy Anoeden
yop -+ Jeleuep sonieg
Fop i sbeusp 1disosy
Y [BUOROUN
057~ LEHEDY
oy \ , m_
,,,M A2 vEy \ gzy
M M My mwjm N ,W.N%.
! gunes b Liswines
uised :
i i) BUIssantd
Aelly] Eong 19NN i
’ AN R A

_“.

/
zer’ WSS jouon sy | AR

i
H
/

[ERE

U.S. Patent

Communication
infrastructure
(BUS)

Nov. 3, 2015 Sheet 6 of 6 US 9,178,827 B2
a0
& B Processor 5D
~ B4
4 2 Main Memory L~ 510
Ef 5(}8
]
_ Display Display
BOE interface Unit
Secondary Memory b 512
544 Hard
Disk Drive
518
/
| | Removable Storage Rimvabie
PR Srive utargge
5164 Lnit
nierface Removable
522 - & Storage
Unit
520/ (526
524 [

Communication
fnterface

Communication Path

FIG. 5

US 9,178,827 B2

1
RATE CONTROL BY TOKEN BUCKETS

BACKGROUND

This invention relates to a rate control system in a system
where it is desirable to control the rate of units of work per
measure of time. More specifically, the invention is related to
a demand driven model that performs a simple and precise
scheduling computation for each service request.

Token bucket algorithms are metering engines that keep
track of how much traffic can be sent to conform to specified
traffic rates. A token, or in some cases a quantity of tokens,
permits the algorithm to process arequest. Tokens are granted
at the beginning of a time increment according to a specified
rate. Token buckets may be applied to resources of a network
that are shared by multiple network devices, such as switches,
routers, etc., where they are used to control data flow between
network devices. Specifically, the token bucket employs cred-
its in the form of tokens with the credits generally correlated
to bandwidth.

BRIEF SUMMARY

This invention comprises a method, system, and computer
program product for an on-demand request driven implemen-
tation of a token bucket for processing service requests.

A method, computer program product, and system are
provided for maintaining a rate control mechanism in the
form of a token bucket for a source of requests. The bucket
accumulates tokens at a given rate until a counter representing
the token bucket reaches a token burst size. Each bucket
represents a share of resource capacity for processing a
request. Responsive to receipt of a request, a quantity of
accumulated tokens is assessed as a function of token bucket
parameters. The request is serviced if the required quantity of
tokens is accumulated. However, in the event the required
number of tokens to process the request is not present in the
bucket, a future time when the required quantity of tokens is
anticipated to have been accumulated is computed.

Other features and advantages of this invention will
become apparent from the following detailed description of
the presently preferred embodiment of the invention, taken in
conjunction with the accompanying drawings.

BRIEF DESCRIPTION OF THE SEVERAL
VIEWS OF THE DRAWINGS

The drawings referenced herein form a part of the specifi-
cation. Features shown in the drawings are meant as illustra-
tive of only some embodiments of the invention, and not of all
embodiments of the invention unless otherwise explicitly
indicated.

FIG. 1 depicts a flow chart illustrating a process for com-
puting the earliest time at which a service request may take
the required tokens from a token bucket.

FIG. 2 depicts a flow chart illustrating a process for
employing an array of token buckets to regulate a system of
traffic sources.

FIG. 3 depicts a block diagram illustrating a plurality of
workloads that are in communication with an array of buck-
ets.

FIG. 4 depicts a block diagram illustrating tools embedded
in a computer system to support rate control and sharing the
aspect of skimming tokens from buckets in order to control
service requests.

10

20

40

45

55

60

2

FIG. 5 depicts a block diagram of a computing environ-
ment according to an embodiment of the present invention.

DETAILED DESCRIPTION

It will be readily understood that the components of the
present invention, as generally described and illustrated in the
Figures herein, may be arranged and designed in a wide
variety of different configurations. Thus, the following
detailed description of the embodiments of the apparatus,
system, and method of the present invention, as presented in
the Figures, is not intended to limit the scope of the invention,
as claimed, but is merely representative of selected embodi-
ments of the invention.

Reference throughout this specification to “a select
embodiment,” “one embodiment,” or “an embodiment”
means that a particular feature, structure, or characteristic
described in connection with the embodiment is included in at
least one embodiment of the present invention. Thus, appear-
ances of the phrases “a select embodiment,” “in one embodi-
ment,” or “in an embodiment™ in various places throughout
this specification are not necessarily referring to the same
embodiment.

The illustrated embodiments of the invention will be best
understood by reference to the drawings, wherein like parts
are designated by like numerals throughout. The following
description is intended only by way of example, and simply
illustrates certain selected embodiments of devices, systems,
and processes that are consistent with the invention as
claimed herein.

A token represents a unit of service, and a token bucket
represents a number of units of service. In one embodiment,
the token bucket represents capacity reserved for a particular
source of requests, including utilizing storage in support of
read and/or write transactions. Each bucket is characterized
by parameters and variables. In its basic form, the token
bucket is characterized by two numeric parameters, including
the maximum number of tokens the bucket may hold without
overflowing, B, and the rate at which tokens are received by
the bucket, R. More specifically, R represents the number of
tokens per unit of time. At the same time, the state of the
bucket is represented by two variables at a particular point in
time, including the number of tokens in the bucket, b, at time
t. In one embodiment, the variable t may represent past,
present or future time. Initially, the variable t may be setto any
convenient value that represents the current time or time in the
past. Similarly, the variable b may be set to any value from 0
to B. Following the setting of the parameters of the bucket as
represented by the variable, the bucket may be employed to
regulate service requests.

A service request is characterized by two variables, includ-
ing the current time, w, and the number of tokens, n, required
to support the request. FIG. 1 is a flow chart (100) illustrating
aprocess for computing the earliest time at which the service
request may take the required tokens from the bucket, thereby
allowing the service request to be processed, e.g. accessing
data storage in support of the request. Initially, it is deter-
mined if a previously scheduled request was satisfied in the
past (102). If the response to the determination is positive, the
variable ¢ is employed to represent the number of tokens
received by the bucket from the time in the past when the
scheduled request was satisfied until the present time (104),
e.g. ¢ =(w-1)*R. In addition, the total number of tokens in the
bucket is assessed (106), e.g. c=b+c. Accordingly, the initial
aspect of an on-demand implementation of the token bucket
assesses satisfaction of a previously scheduled request.

US 9,178,827 B2

3

Following completion of the assessments at steps (104) and
(106) or a negative response to the determination at step
(102), it is determined if the quantity of tokens in the bucket
exceeds the maximum quantity of tokens that the bucket can
hold (108), also referred to herein as a burst size of the bucket.
A positive response to the determination at step (108) is an
indication that some of the tokens have overflowed, and the
variable ¢ is assigned to the maximum quantity of tokens that
the bucket can hold without overflowing (110), e.g. c=B.
Following step (110) or a negative response to the determi-
nation at step (108), it is determined if the bucket contains
enough tokens to proceed with satisfying the service request
without delay (112). A positive response to the determination
at step (112) enables the request to be satisfied on demand.
Specifically, the number of tokens left over in the bucket is
assigned to the variable b (114), e.g. b=c-n, and the request is
satisfied by assigning the time variable, t, to the current time,
w, (116) and assigning the variable z to the current time w
(118). Accordingly, if it is determined that the bucket contains
enough tokens to satisfy the request, the request is serviced
immediately, e.g. on-demand.

The number of tokens in the bucket is a quantity that is in
flux, and changes based upon servicing different requests and
the rate at which the bucket receives tokens. A negative
response to the determination at step (112) is an indication
that the request must wait for a future time when the quantity
of tokens in the bucket to satisfy the request are available
(120). In one embodiment, the service request can gather the
tokens it needs from the bucket while in the state of waiting,
such as gathering tokens that may have otherwise overflowed
the bucket. Following step (120) an assessment is conducted
to ascertain the future time when the bucket will have enough
tokens required to satisty the request, e.g. z=t+(n-b)/R. The
time variable t is then assigned to the assessed future time, z,
(122), and the bucket state at time variable t is set to zero
(124). Specifically, at steps (122) and (124), the bucket state
at the assessed future time to satisfy the request will take and
release the tokens in the bucket. The request must then wait
until time z to satisty the request and continue processing with
data storage (126). At the time when the request is satisfied,
the request is considered as having the required tokens.
Accordingly, the future time for servicing a request is com-
puted as a function of the required quantity of tokens, the
quantity of accumulated tokens, the rate at which tokens are
accumulated, and the time of a last computation.

As demonstrated in FIG. 1, a token bucket is employed to
support on demand satisfaction of one or more service request
in communication with data storage. The computation and the
associated variables are described with integer value repre-
sentation. In one embodiment, the variables may represent
non-integer values. For example, the variable b may represent
whole tokens left in the bucket, and the time to acquire the
necessary number of tokens may be adjusted to the last time
a whole number of tokens were available and in the bucket.
Similarly, in one embodiment, the request is satisfied when
the future time, z, the bucket has the whole number of tokens,
w, to satisfy the request.

The process demonstrated in FIG. 1 shows the use of a
single token bucket to satisfy and control satisfaction of a
service request in communication with data storage. In one
embodiment, the token bucket may be utilized to control the
rate of communication, access to data storage, computing
system, and any system where itis desirable to control the rate
of units of work per measure of time. The token bucket
scheme shown in FIG. 1 may be extended to an array of token
buckets, with each individual bucket representing a share of
the resource reserved by an application. In other words, the

10

15

20

25

30

35

40

45

50

55

60

65

4

tokens are a fractional representation of shared capacity. Each
bucket is represented by a counting variable, i, with i, ,
representing the total number of buckets in the array. The
maximum number of tokens in each individual bucket is
represented as B[i]. The rate of which tokens are received in
each individual bucket is represented as R[i]. The skim line of
each individual bucket is represented as S[i]. As described in
FIG. 2, the skim line represents an attainment of maximum
capacity in a specific bucket. When any bucket i in the array
contains more than S[i] tokens, those in excess of the skim
parameter may be used by any requester in the array. In
numerical terms, tokens in excess of the skim line is the
difference of the maximum number of tokens and the skim
line, e.g. B[i]-S[i], with the value of S[i] constrained by BYi]
being greater than or equal to S[i] and S[i] being greater than
or equal to zero.

Each bucket has two state variable, time and token account.
Time is represented as t[i] and the token count is represented
as b[i]. More specifically, the token count, b[i], represents the
number oftokens bucket, can hold at time t[i]. Tokens that rise
above the skim line of any bucket become available to any
requester being serviced by the buckets in the array. Tokens
can overflow individual buckets in the array, with the param-
eter that the long term average token rate cannot exceed the
sum of the rates of the individual buckets in the array. Simi-
larly, the array does not hold more tokens that the sum of all
of the buckets in the array. However, any tokens unused by a
particular resource for which they were reserved can be used
by any other resource, individually or in combination, and at
the same time avoiding the need to adjust individual bucket
parameters in real-time.

An array of buckets can be used to regulate a system with
aplurality of traffic sources. A service request is characterized
by the current time, w, the number of tokens required, n, and
the source identifier i. Since no single request from source i
should exceed the guaranteed reserved size of its primary
bucket, the number of tokens required should be constrained
to be less than or equal to the maximum number of tokens in
the bucket, BJ[i]. FIG. 2 is a flow chart (200) illustrating a
process for employing an array of token buckets to regulate a
system of traffic sources. In one embodiment, multiple buck-
ets are used in the context of a single server, with each bucket
representing a number of tokens reserved for a class of users
that are sharing the single server. The variable c is assigned to
zero, and will be employed to represent a number of tokens. It
is determined if a previously scheduled request was satisfied
by bucket[i] in the past (202). If the response to the determi-
nation at step (202) is positive, the variable ¢ is assessed to
represent the number of tokens received by bucket[i] from the
time in the past when the scheduled request was satisfied until
the present time (204), e.g. c=(w—=t[i])*R[i]. In addition, the
total number of tokens in bucket[i] is assessed (206), e.g.
c=b[i]+c. Accordingly, the initial aspect of an on-demand
implementation of the token bucket assesses satisfaction of a
previously schedule request.

Following completion of the assessments at steps (204) and
(206) or a negative response to the determination at step
(202), it is determined if the quantity of tokens in bucket[i]
exceeds the maximum quantity of tokens that the bucket can
hold (208). A positive response to the determination at step
(208) is an indication that some of the tokens have over-
flowed, and the variable c is assigned to the maximum quan-
tity of tokens that bucket[i] can hold without overflowing
(210), e.g. c=BJi]. Following step (210) or a negative
response to the determination at step (208), it is determined if
bucket[i] contains enough tokens to proceed with satisfying
the service request without delay (212). A positive response to

US 9,178,827 B2

5

the determination at step (212) enables the request to be
satisfied on demand. Specifically, the number of tokens left
over in the bucket is assigned to the variable b (214), e.g.
b[i]=c-n, and the request is satisfied by assigning the time
variable, t[i], to the current time, w, (216) and assigning the
variable z to the current time w (218). Accordingly, if it is
determined that the bucket contains enough tokens to satisfy
the request, the request is serviced immediately, e.g. on-
demand.

The number of tokens in any one of the buckets in the array
is a quantity that is in flux, and changes based upon servicing
different requests and the rate at which the individual buckets
receive tokens. A negative response to the determination at
step (212) is an indication that the request must wait for a
future time when the quantity of tokens in the bucket to satisfy
the request are available (220). In one embodiment, the ser-
vice request can gather the tokens it needs from the bucket
while in the state of waiting, such as gathering tokens that
may have otherwise overflowed the bucket. Following step
(220), an assessment is conducted to ascertain the future time
when the bucket will have enough tokens required to satisfy
the request, e.g. z=t[i]+(n-b[i])/R[i], and a calculation of the
number of tokens the bucket need to satisfy the request (222),
perhaps from skimming tokens from other buckets in the
array. Accordingly, with the array of buckets, tokens may be
skimmed within the array to satisfy one or more service
requests.

Individual buckets in the bucket array operate in conjunc-
tion with other buckets in the array. More specifically, one
bucket may be servicing one request while a second bucket is
servicing a second request. At the same time, the aspect of
skimming tokens employs the array, such that each bucket is
assessed for tokens to spare. The number of buckets in the
array is defined as J,,; (224), and an associated counting
variable, j, is initialized (226). The bucket in need of tokens,
BJ[1], searches the next bucket j in the array for availability of
tokens for skimming (228). It is then determined if the bucket
searching the array has enough tokens to process their pend-
ing request (230). A negative response to the determination at
step (230) is followed by an increment of the counting vari-
ablej (232), and a subsequent determination of whether all of
the buckets in the array have been searched (234). A negative
response to the determination at step (234) is followed by a
return to step (228), and a positive response to the determi-
nation at step (234) is followed by a return to step (226) so that
the bucket in need of excess tokens may continue to skim
excess tokens as each bucket continues to receive tokens on
demand and may have acquired excess tokens during the time
interval between searches.

While looking at all of the buckets in the array, it is deter-
mined if a previously scheduled request was satisfied in the
past (236). A positive response to the determination at step
(236) is followed by assigning the number of tokens in the
bucket to the variable e (238), e.g. e=b[j]+(w-t[j]*R[j]). It is
then determined if the number of tokens in the bucket, e, is
greater than the maximum number of tokens bucket, can hold
(240). If the response to the determination at step (240) is
positive, then bucket, is at capacity, and the number of tokens
in the bucket, e, is set to the capacity of the bucket (242).
However, if the response to the determination at step (232) is
negative, then it is determined if bucket; has enough tokens
over the skim line to satisfy the request (244). A positive
response to the determination at step (244) is following by
skimming tokens from bucket, (246) and updating the state of
bucket j (248). In one embodiment, the skim line on one or
more of the buckets in the array could be set to zero, indicat-
ing that any and all of the tokens may be skimmed at any time.

25

40

45

6

A bucket with a skim line at zero would be a bucket repre-
senting completely shareable capacity.

It is understood that only tokens above the skim line of a
bucket in the array may be skimmed. More specifically, the
bucket from which the tokens are being acquired cannot be
left empty. As such, only tokens above the skim line may be
acquired. If at step (244) it is determined that bucket, does not
have enough tokens for skimming, the process returns to step
(232) to assess the next bucket in the array. Accordingly, each
of'the buckets in the array, including the bucket subject to the
request, is investigated for tokens to satisfy the request.

Tokens are dripped into the individual buckets of the array
at a rate, e.g., conversely, the buckets receive tokens at the
same rate. At the same time, more than one bucket in the array
may be seeking tokens from other buckets in the array. As
such, the array must be monitored and reviewed to seek
tokens to satisfy one or more requests, when necessary. In
contrast to the single bucket scenario, it is challenging to
predict the earliest time the request will be satisfied. For
example, in one embodiment, tokens may be skimmed from
multiple buckets to satisfy a single request. More specifically,
the required tokens to satisty the request may be collected
from more than one bucket in the array. Furthermore, as
demonstrated in FIG. 2, the process of skimming buckets is
shown to start with the first bucket in the array. In one embodi-
ment, the process of skimming tokens from one or more
buckets in the array may start at any bucket in the array and is
not limited to the first bucket. Similarly, in one embodiment,
the search for excess tokens across the array may start with a
different token bucket each time the search begins. In another
embodiment, the order in which the buckets in the array are
searched may be altered so that buckets are searched in a
different order than a prior search. The variations of use of the
token bucket array may be employed individually or selec-
tively combined.

As shown and described in FIG. 2, the array of token
buckets enables skimming excess tokens within the array,
with parameters to ensure equity within the array. The array of
token buckets functions as a unit to control multiple sources
of'requests, with each bucket representing a share of resource
capacity. In one embodiment, one or more buckets within the
array may be dedicated to a particular source or set of sources.
To support the dedication of buckets, one or more of the skim
line values of the buckets, S[i], are set to their respective
maximum number of tokens the bucket may hold, B[i]. Fur-
thermore, as shown and described in FIG. 2, a plurality of
buckets may be arranged in an array to support skimming and
sharing of excess tokens. In one embodiment, the array of
buckets may be partitioned into two or more groups. The
partition enables sharing of tokens to be constrained group
wise. In one embodiment, the partitioning of the array con-
strains sharing of tokens on an intra-partition basis. Similarly,
in one embodiment, the partitioning may be replaced with
application specific instructions to designate and limit which
sources can skim tokens from which buckets. Accordingly,
the buckets and skimming of excess tokens may be regulated
in various manners.

As shown in FIG. 2, the request may seek overflow tokens
from buckets within the array. In one embodiment, a catch
basin may be employed for sharing excess tokens. FIG. 3 isa
block diagram (300) illustrating a plurality of token genera-
tors and an array of buckets in communication with a catch
basin. In the example shown herein, there are three token
generators (TG), TG, (310), TG (312) and TB (314). Each
of the token generators is in direct communication with a
respective bucket. As shown, TG, (310) is in communication
with bucket, (320), TGy (312) is in communication with

US 9,178,827 B2

7

bucket (322),and TB . (314) is in communication with buck-
et. (324). The token generators for each bucket produce
tokens at the same or different rates. Each of the buckets is
shown with a skim line as follows: bucket, (320) has skim
line, (330), buckety (322) has skim lineg (332), and bucket
(324) has skim line - (334). In one embodiment, the skim lines
for each of the respective buckets may be at the same level,
and similarly, in one embodiment, the skim lines for each of
the respective buckets may be at different levels. A catch basin
(350) is provided in communication with the array of buckets
(320), (322), and (324). As any one of the buckets in the array
acquires tokens (360) that exceed their respective capacity,
e.g. that exceed the skim line, the excess tokens are received
in the catch basin (350). Similarly, token that are below the
respective skim line are reserved for the respective bucket. In
the example shown herein, bucket, (320) and bucket, (322)
are shown with tokens in excess of their respective skim lines
(330) and (332), respectively, and as such, the tokens (360)
are shown in each of these buckets dripping into the catch
basin (350). At the same time, bucket. (324) is shown with
received tokens below the skim line (334), and as such, the
tokens in bucket. (324) are not dripping into or otherwise
being received by the catch basin (350). In another example,
workloads in class A may dip into bucket , (320) and a respec-
tive dipper (not shown) may remove tokens from bucket,
(320) to support a service request. If there are not enough
tokens available in bucket, (320) to support the service
request, the dipper may acquire additional tokens from the
catch basin (350), if available. Accordingly, the catch basin
(350) represents short term unused capacity that would be
available for sharing of excess tokens among buckets in the
array.

The processes shown in FIGS. 1-3 may be embodied as
hardware components. FIG. 4 is a block diagram (400) illus-
trating tools embedded in a computer system to support rate
control and sharing the aspect of skimming tokens from buck-
ets in order to control service requests. As shown, a server
(420) is provided in communication with one or more client
machines (410) and (412) across a network connection (405).
As one or more requests are received, a rate control mecha-
nism in the form of a token bucket is employed to manage
processing of the requests. More specifically, the server (420)
is provided with a processing unit (422) in communication
with memory (426) across a bus (424). The server (420)
includes tools to support the rate control. As shown, a rate
control mechanism (430) is shown in communication with
the memory (426), although in one embodiment, it may be
embedded within memory (426). The rate control mechanism
(430) includes a token bucket (432) represented by and in
communication with a counter (434). The bucket (432) accu-
mulates tokens at a given rate. The counter (434) functions to
assess or otherwise count the quantity of tokens in the bucket
(432) at any given time. The counter (434) represents how
many tokens are current in the bucket. As noted above, the
bucket (432) has a burst size, which represents the maximum
quantity of tokens the bucket (432) can hold. In one embodi-
ment, the counter (434) is updated on demand at the time a
new request arrives. For example, the counter (434) may be
updated in response to receiving a request so that the counter
will reflect the amount of tokens that would be accumulated
since the last request. If the request needs to be serviced in the
future, the counter (434) may be updated to reflect a calcula-
tion of how many additional tokens will accumulate at the
time when the request will be serviced. Accordingly, the
token bucket counter (434), which is a representation of the
quantity of tokens in the bucket, is updated on demand in
response to receipt of a request.

10

15

20

25

30

35

40

45

50

55

60

65

8

The server (420) is shown with a functional unit (450) with
embedded managers to support processing of requests, with
the functional unit in communication with both the rate con-
trol mechanism (430) and the processing unit (422). The
managers include but are not limited to, a receipt manager
(452), a service manager (454), and a capacity manager (456).
The receipt manager (452) functions in conjunction with the
processing unit (422) to compute a quantity of accumulated
tokens as a function of one or more parameters of the bucket
(432) in response to receipt of a request. The service manager
(454) services the request based on an assessment of the
bucket (432) by the receipt manager (452). More specifically,
each request will have an associated quantity of tokens
required for processing the request. The quantity of tokens
may be based on characteristics of the request, the network,
etc. The service manager (454) services the request if the
quantity of tokens required to service the request are accu-
mulated and present in the bucket (432). However, in the
event that the bucket does not contain the requisite number of
tokens, the service manager (454) may compute a future time
when the requisite number of tokens will be available based
on the current state of the bucket and the rate at which the
bucket receives tokens, as demonstrated in FIG. 2. As noted
above, the bucket (432) accumulates tokens on demand and at
a given rate. Accordingly, barring receipt of any other
requests, the time when the quantity of tokens will be avail-
able can be assessed.

The tools described above enable processing of requests
based on system parameters. More specifically, the token
bucket (432) and the rate at which it receives tokens are based
on system parameters, such as bandwidth and storage. How-
ever, the system is not static and may be processing more than
one request at a time. The receipt manager (452) computes a
quantity of accumulated tokens as a function of bucket
parameters. Such parameters include, but are not limited to,
the rate at which tokens are accumulated, a burst size of the
bucket, the time of last computation of available tokens, and
the quantity of tokens remaining in the bucket since the last
computation. Circumstances may yield a sufficient quantity
of'tokens available to satisty the request, while circumstances
may yield the inverse. In the event there are not enough tokens
available, the receipt manager (452) computes a time in the
future when the request may be serviced. As indicated, the
bucket receives tokens at a set rate. Therefore the request
manager (452) may employ several known and available fac-
tors to compute the time in the future, the factors including,
but not limited to, the required number of tokens to satisfy the
request, the quantity of accumulated tokens, the rate at which
tokens are accumulated, and the time of the last computation.
Accordingly, the receipt manager (452) functions to process
requests based upon the parameters of the token bucket.

As described above, the rate control mechanism (430) is
described above with one token bucket (432) to process read
and write requests. In one embodiment, the rate control
mechanism (430) may be expanded to include an array (460)
of'token buckets (432). Although two token buckets (432) and
associated counter (434) are shown in the array (460), the
quantity of token buckets shown should not be considered
limiting. The buckets (432) in the array (460) function
together as a unit to control multiple sources of requests and
to share resource capacity. Specifically, each bucket (432)
individually represents a share of resource capacity. The
capacity manager (456) functions to support capacity driven
sharing of tokens in the array (460). More specifically, the
capacity manager (456), which is in communication with the
service manager (454), addresses overflow of tokens in the
array (450). The capacity manager (456) functions to assign

US 9,178,827 B2

9

an overflow size to each bucket (432) so that the buckets may
share excess or unused capacity within the array. Each of the
buckets (432) measures available excess tokens and may
assign a reserved burst size that is smaller than the burst size
of'the bucket, so that tokens above the reserved burst size may
be made available to other buckets in the array (460). Accord-
ingly, the capacity manager (456) enhances sharing of tokens
among the buckets in the array.

In addition to the buckets (432), a catch basin (470) is
provided in the array (460). The catch basin (470) represents
short term unused capacity within the array. More specifi-
cally, the capacity manager (456) overflows unused tokens
with the array into the catch basin (470). Any one of the
buckets (432) in the process of servicing a request and is short
on the required number of tokens, may seek use of any avail-
able tokens in the catch basin (470). Accordingly, the catch
basin (470) functions to address sharing of unused tokens
within the array (460).

As identified above, the receipt manager (452), service
manager (454), and capacity manager (456) is shown residing
inmemory (426) of the server (420). Although in one embodi-
ment, the managers (452)-(456), respectively, may reside as
hardware tools external to the memory (426). In another
embodiment, the managers (452)-(456), respectively, may be
implemented as a combination of hardware and software.
Similarly, in one embodiment, the managers (452)-(456) may
be combined into a single functional item that incorporates
the functionality of the separate items. As shown herein, each
of the manager(s) (452)-(456) are shown local to the server
(420) and in communication with the processing unit (422).
However, in one embodiment they may be collectively or
individually distributed across a shared pool of configurable
computer resources and function as a unit to support process-
ing of requests. Accordingly, the managers may be imple-
mented as software tools, hardware tools, or a combination of
software and hardware tools.

Furthermore, the described features, structures, or charac-
teristics may be combined in any suitable manner in one or
more embodiments. Examples of the director and managers
have been provided to lend a thorough understanding of
embodiments of the invention. One skilled in the relevant art
will recognize, however, that the invention can be practiced
without one or more of the specific details, or with other
methods, components, materials, etc. In other instances, well-
known structures, materials, or operations are not shown or
described in detail to avoid obscuring aspects of the invention.

The functional unit(s) described above in FIG. 4 has been
labeled with managers. The managers may be implemented in
programmable hardware devices such as field programmable
gate arrays, programmable array logic, programmable logic
devices, or the like. The manager(s) may also be implemented
in software for processing by various types of processors. An
identified director or manager of executable code may, for
instance, comprise one or more physical or logical blocks of
computer instructions which may, for instance, be organized
as an object, procedure, function, or other construct. Never-
theless, the executable of an identified manager need not be
physically located together, but may comprise disparate
instructions stored in different locations which, when joined
logically together, comprise the managers and achieve the
stated purpose of the managers.

Indeed, a manager of executable code could be a single
instruction, or many instructions, and may even be distributed
over several different code segments, among different appli-
cations, and across several memory devices. Similarly, opera-
tional data may be identified and illustrated herein within the
manager, and may be embodied in any suitable form and

10

15

20

25

30

35

40

45

50

55

60

65

10

organized within any suitable type of data structure. The
operational data may be collected as a single data set, or may
be distributed over different locations including over different
storage devices, and may exist, at least partially, as electronic
signals on a system or network.

Referring now to the block diagram (500) of FIG. 5, addi-
tional details are now described with respect to implementing
an embodiment of the present invention. The computer sys-
tem includes one or more processors, such as a processor
(502). The processor (502) is connected to a communication
infrastructure (504) (e.g., a communications bus, cross-over
bar, or network).

The computer system can include a display interface (506)
that forwards graphics, text, and other data from the commu-
nication infrastructure (504) (or from a frame buffer not
shown) for display on a display unit (508). The computer
system also includes a main memory (510), preferably ran-
dom access memory (RAM), and may also include a second-
ary memory (512). The secondary memory (512) may
include, for example, a hard disk drive (514) and/or a remov-
able storage drive (516), representing, for example, a floppy
disk drive, a magnetic tape drive, or an optical disk drive. The
removable storage drive (516) reads from and/or writes to a
removable storage unit (518) in a manner well known to those
having ordinary skill in the art. Removable storage unit (518)
represents, for example, a floppy disk, a compact disc, a
magnetic tape, or an optical disk, etc., which is read by and
written to by removable storage drive (516). As will be appre-
ciated, the removable storage unit (518) includes a computer
readable medium having stored therein computer software
and/or data.

In alternative embodiments, the secondary memory (512)
may include other similar means for allowing computer pro-
grams or other instructions to be loaded into the computer
system. Such means may include, for example, a removable
storage unit (520) and an interface (522). Examples of such
means may include a program package and package interface
(such as that found in video game devices), a removable
memory chip (such as an EPROM, or PROM) and associated
socket, and other removable storage units (520) and interfaces
(522) which allow software and data to be transferred from
the removable storage unit (520) to the computer system.

The computer system may also include a communications
interface (524). Communications interface (524) allows soft-
ware and data to be transferred between the computer system
and external devices. Examples of communications interface
(524) may include a modem, a network interface (such as an
Ethernet card), acommunications port, or a PCMCIA slotand
card, etc. Software and data transferred via communications
interface (524) is in the form of signals which may be, for
example, electronic, electromagnetic, optical, or other signals
capable of being received by communications interface
(524). These signals are provided to communications inter-
face (524) via a communications path (i.e., channel) (526).
This communications path (526) carries signals and may be
implemented using wire or cable, fiber optics, a phone line, a
cellular phone link, a radio frequency (RF) link, and/or other
communication channels.

In this document, the terms “computer program medium,”
“computer usable medium,” and “computer readable
medium” are used to generally refer to media such as main
memory (510) and secondary memory (512), removable stor-
age drive (516), and a hard disk installed in hard disk drive
(514).

Computer programs (also called computer control logic)
are stored in main memory (510) and/or secondary memory
(512). Computer programs may also be received via a com-

US 9,178,827 B2

11

munication interface (524). Such computer programs, when
run, enable the computer system to perform the features of the
present invention as discussed herein. In particular, the com-
puter programs, when run, enable the processor (502) to
perform the features of the computer system. Accordingly,
such computer programs represent controllers of the com-
puter system.

As will be appreciated by one skilled in the art, aspects of
the present invention may be embodied as a system, method
or computer program product. Accordingly, aspects of the
present invention may take the form of an entirely hardware
embodiment, an entirely software embodiment (including
firmware, resident software, micro-code, etc.) or an embodi-
ment combining software and hardware aspects that may all
generally be referred to herein as a “circuit,” “module” or
“system.” Furthermore, aspects of the present invention may
take the form of a computer program product embodied in one
or more computer readable medium(s) having computer read-
able program code embodied thereon.

Any combination of one or more computer readable medi-
um(s) may be utilized. The computer readable medium may
be a computer readable signal medium or a computer read-
able storage medium. A computer readable storage medium
may be, for example, but not limited to, an electronic, mag-
netic, optical, electromagnetic, infrared, or semiconductor
system, apparatus, or device, or any suitable combination of
the foregoing. More specific examples (a non-exhaustive list)
of the computer readable storage medium would include the
following: an electrical connection having one or more wires,
a portable computer diskette, a hard disk, a random access
memory (RAM), a read-only memory (ROM), an erasable
programmable read-only memory (EPROM or Flash
memory), an optical fiber, a portable compact disc read-only
memory (CD-ROM), an optical storage device, a magnetic
storage device, or any suitable combination of the foregoing.
In the context of this document, a computer readable storage
medium may be any tangible medium that can contain, or
store a program for use by or in connection with an instruction
execution system, apparatus, or device.

A computer readable signal medium may include a propa-
gated data signal with computer readable program code
embodied therein, for example, in baseband or as part of a
carrier wave. Such a propagated signal may take any of a
variety of forms, including, but not limited to, electro-mag-
netic, optical, or any suitable combination thereof. A com-
puter readable signal medium may be any computer readable
medium that is not a computer readable storage medium and
that can communicate, propagate, or transport a program for
use by or in connection with an instruction execution system,
apparatus, or device.

Program code embodied on a computer readable medium
may be transmitted using any appropriate medium, including
but not limited to wireless, wireline, optical fiber cable, RF,
etc., or any suitable combination of the foregoing.

Computer program code for carrying out operations for
aspects of the present invention may be written in any com-
bination of one or more programming languages, including
an object oriented programming language such as Java,
Smalltalk, C++ or the like and conventional procedural pro-
gramming languages, such as the “C” programming language
or similar programming languages. The program code may
execute entirely on the user’s computer, partly on the user’s
computer, as a stand-alone software package, partly on the
user’s computer and partly on a remote computer or entirely
on the remote computer or server. In the latter scenario, the
remote computer may be connected to the user’s computer
through any type of network, including a local area network

25

40

45

50

12

(LAN) or a wide area network (WAN), or the connection may
be made to an external computer (for example, through the
Internet using an Internet Service Provider).

Aspects of the present invention are described above with
reference to flowchart illustrations and/or block diagrams of
methods, apparatus (systems) and computer program prod-
ucts according to embodiments of the invention. It will be
understood that each block of the flowchart illustrations and/
or block diagrams, and combinations of blocks in the flow-
chart illustrations and/or block diagrams, can be imple-
mented by computer program instructions. These computer
program instructions may be provided to a processor of a
general purpose computer, special purpose computer, or other
programmable data processing apparatus to produce a
machine, such that the instructions, which execute via the
processor of the computer or other programmable data pro-
cessing apparatus, create means for implementing the func-
tions/acts specified in the flowchart and/or block diagram
block or blocks.

These computer program instructions may also be stored in
a computer readable medium that can direct a computer, other
programmable data processing apparatus, or other devices to
function in a particular manner, such that the instructions
stored in the computer readable medium produce an article of
manufacture including instructions which implement the
function/act specified in the flowchart and/or block diagram
block or blocks.

The computer program instructions may also be loaded
onto a computer, other programmable data processing appa-
ratus, or other devices to cause a series of operational steps to
be performed on the computer, other programmable appara-
tus or other devices to produce a computer implemented
process such that the instructions which execute on the com-
puter or other programmable apparatus provide processes for
implementing the functions/acts specified in the flowchart
and/or block diagram block or blocks.

The flowcharts and block diagrams in the Figures illustrate
the architecture, functionality, and operation of possible
implementations of systems, methods and computer program
products according to various embodiments of the present
invention. In this regard, each block in the flowcharts or block
diagrams may represent a module, segment, or portion of
code, which comprises one or more executable instructions
for implementing the specified logical function(s). It should
also be noted that, in some alternative implementations, the
functions noted in the block may occur out of the order noted
in the figures. For example, two blocks shown in succession
may, in fact, be executed substantially concurrently, or the
blocks may sometimes be executed in the reverse order,
depending upon the functionality involved. It will also be
noted that each block of the block diagrams and/or flowchart
illustration, and combinations of blocks in the block diagrams
and/or flowchart illustration, can be implemented by special
purpose hardware-based systems that perform the specified
functions or acts, or combinations of special purpose hard-
ware and computer instructions.

The terminology used herein is for the purpose of describ-
ing particular embodiments only and is not intended to be
limiting of the invention. As used herein, the singular forms
“a”, “an” and “the” are intended to include the plural forms as
well, unless the context clearly indicates otherwise. It will be
further understood that the terms “comprises” and/or “com-
prising,” when used in this specification, specify the presence
of stated features, integers, steps, operations, elements, and/
or components, but do not preclude the presence or addition
of one or more other features, integers, steps, operations,
elements, components, and/or groups thereof.

US 9,178,827 B2

13

The corresponding structures, materials, acts, and equiva-
lents of all means or step plus function elements in the claims
below are intended to include any structure, material, or act
for performing the function in combination with other
claimed elements as specifically claimed. The description of
the present invention has been presented for purposes of
illustration and description, but is not intended to be exhaus-
tive or limited to the invention in the form disclosed. Many
modifications and variations will be apparent to those of
ordinary skill in the art without departing from the scope and
spirit of the invention. The embodiment was chosen and
described in order to best explain the principles of the inven-
tion and the practical application, and to enable others of
ordinary skill in the art to understand the invention for various
embodiments with various modifications as are suited to the
particular use contemplated. Accordingly, the on demand
accumulation of tokens supports a demand driven model for
rate control that enables precision with respect to scheduling
of service requests.

Alternative Embodiment

It will be appreciated that, although specific embodiments
of the invention have been described herein for purposes of
illustration, various modifications may be made without
departing from the spirit and scope of the invention. In one
embodiment, a software implementation may require the use
oflocks and/or critical sections to satisfy the read and/or write
request with data storage or related methods to control access
to state variables, so as to operate in a multi-threaded or
multi-tasking computing system. Similarly, the rate control
may be in the form of units of work per measure of time,
including packets per second, operations per second, bytes
per second, service requests per second, pages per second,
etc. Accordingly, the scope of protection of this invention is
limited only by the following claims and their equivalents.

We claim:

1. A method comprising:

maintaining a rate control mechanism for a source of

requests, the rate control mechanism including a token
bucket represented by a counter;

the bucket accumulating tokens at a given rate until the

counter reaches a token bucket burst size;
in response to receiving a request, the request associated
with a unit of work rate per measure of time, computing
a quantity of accumulated tokens as a function of token
bucket parameters, wherein the token bucket parameters
include the rate at which tokens are accumulated, a burst
size of the bucket, time of a last computation, and a
quantity of tokens remaining since the last computation;

updating the counter on demand, and computing a time for
granting the received request based on the updated
counter; and

servicing the request if the required quantity of tokens are

accumulated, and computing a future time when the
required quantity of tokens will be accumulated if the
required quantity of tokens are unavailable.

2. The method of claim 1, further comprising computing
future time for servicing a request as a function of the required
quantity of tokens, the quantity of accumulated tokens, rate at
which tokens are accumulated, and time of a last computa-
tion.

3. The method of claim 1, further comprising an array of
token buckets functioning as a unit that controls multiple
sources of requests, each bucket representing a share of
resource capacity.

20

25

30

40

45

50

14

4. The method of claim 3, further comprising capacity
driven sharing of tokens in the array, including assigning an
overflow size to each bucket in the array and sharing excess or
unused capacity within the array, including each bucket in the
array measuring available excess tokens, and for each bucket
assigning a reserved burst size smaller than a burst size of the
buckets and tokens above the reserved burst size available to
other buckets in the array.

5. The method of claim 4, further comprising partitioning
the array, and constraining sharing of tokens in an intra-
partition basis.

6. The method of claim 3, further comprising overflowing
unused tokens of the array into a catch basin, the basin rep-
resenting short term unused capacity available for sharing
with the array.

7. The method of claim 3, further comprising skimming
unused tokens from buckets in the unit with shareable capac-
ity.

8. A computer program product for managing rate control
of'requests, the computer program product comprising a com-
puter readable storage device having program code embodied
therewith, the program code executable by a processor to:

maintain a rate control mechanism for a source of requests,

the rate control mechanism including a token bucket
represented by a counter;

the bucket to accumulate tokens at a given rate until the

counter reaches a token bucket burst size;
in response to receiving a request, the request associated
with a unit of work rate per measure of time, compute a
quantity of accumulated tokens as a function of token
bucket parameters, wherein the token bucket parameters
include the rate at which tokens are accumulated, a burst
size of the bucket, time of a last computation, and a
quantity of tokens remaining since the last computation;

update the counter on demand, and compute a time to grant
the received request based on the updated counter; and

service the request if the required quantity of tokens are
accumulated, and compute a future time when the
required quantity of tokens will be accumulated if the
required quantity of tokens are unavailable.

9. The computer program product of claim 8, further com-
prising program code to compute future time for servicing the
request as a function of the required quantity of tokens, the
quantity of accumulated tokens, rate at which tokens are
accumulated, and time of a last computation.

10. The computer program product of claim 8, further
comprising program codeto support an array of token buckets
functioning as a unit that controls multiple sources of
requests, each bucket representing a share of resource capac-
ity.

11. The computer program product of claim 10, further
comprising program code to support capacity driven sharing
of tokens in the array, including assigning an overflow size to
each bucket inthe array and sharing excess or unused capacity
within the array, including each bucket in the array measuring
available excess tokens, and for each bucket assigning a
reserved burst size smaller than a burst size of the buckets and
tokens above the reserved burst size available to other buckets
in the array.

12. The computer program product of claim 10, further
comprising program code to overflow unused tokens of the
array into a catch basin, the basin representing short term
unused capacity available for sharing with the array.

13. The computer program product of claim 10, further
comprising program code to skim unused tokens from buck-
ets in the unit with shareable capacity.

US 9,178,827 B2

15

14. A method comprising:

maintaining a rate control mechanism for a source of
requests, the rate control mechanism including two or
more token buckets functioning as a unit for managing
multiple sources of requests, each bucket representing a
share of resource capacity;

each of the buckets accumulating tokens at a given rate;

in response to receiving a request, computing a quantity of
accumulated tokens as a function of token bucket param-
eters, wherein the token bucket parameters include the
rate at which tokens are accumulated in each bucket, a
burst size of each bucket, time of a last computation, and
a quantity of tokens remaining in each bucket since the
last computation;

updating a token bucket counter on demand;

servicing a request if the required quantity of tokens are
accumulated; and

computing availability of excess tokens within the unit if
the required quantity of tokens are unavailable, includ-
ing sharing excess or unused capacity within the unit.

10

15

16

15. The method of claim 14, further comprising overflow-
ing unused tokens within the unit into a shared bin, wherein
tokens within the bin are available to each of the buckets in the
unit to service the request.

16. The method of claim 15, wherein overflowing unused
tokens includes each bucket in the unit measuring available
excess tokens, and for each bucket assigning a reserved burst
size smaller than a burst size of the buckets and tokens above
the reserved burst size available to other buckets in the array.

17. The method of claim 14, further comprising computing
a future time when the required quantity of tokens will be
accumulated if the required quantity of tokens are unavailable
in a bucket servicing the request and in the bin.

18. The method of claim 14, further comprising skimming
unused tokens from buckets in the unit with shareable capac-

ity.

